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γ-rays provide a unique perspective on cosmic ray astrophysics: 

Synergies: 

Ø via direct and indirect detection techniques 
Ø  to address CR origins, acceleration, and propagation 

Indirect CR evidence: 
Ø potential sources: MW studies using spatial and spectral information give 

insight into particle populations and acceleration processes 
Ø can depend on environment… 
Ø Use environment as CR “calorimeter” to infer CR distributions beyond Earth. 

Studies of diffuse γ-rays give insight into CR propagation. 

Direct CR detection:  

Ø CRs are the background for all γ-ray experiments: collect and analyze data! 
Ø Use particle shower techniques, Earth’s B-field, etc for charge separation. 

CR measurements provide insight into the sources best investigated in γ-rays. 

T.	J.	Brandt	
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Indirect: Potential Sources  
Detection of low energy pion-decay cutoff in 3 SNRs’ spectra suggests proton acceleration: 

Ackermann	et	al.	2012	
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Detection of low energy π0-decay cutoff in 3 SNRs’ spectra suggests proton acceleration: 

Ackermann	et	al.	2012	

W51C: 3rd SNR w evidence of π0 bump  

T. Joegler et al. 2015  

Maximum Energy??	

Indirect: Potential Sources  
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Fermi-LAT SNR Catalog: relate flux measurements to the energy imparted to CRs: 

εCR => energy content in particles 
accelerated up to the observation time 
relative to the SN explosion energy.  
If energy losses & escape negligible,  
εCR = hadron efficiency. 

Constraining SNRs’ CR Acceleration  

5	Acero	et	al.	2015	
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where we take: 
Ø  photon index ΓGeV as a proxy for CR index ΓCR  

and 
Ø   f (ΓCR) ~ constant for ECR,max>~ 200 GeV 

1-100 GeV flux for a given CRmax energy:	
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Fermi-LAT SNR Catalog: relate flux measurements to the energy imparted to CRs: 

Constraining SNRs’ CR Acceleration  

εCR => energy content in particles 
accelerated up to the observation time 
relative to the SN explosion energy.  
If energy losses & escape negligible,  
εCR = hadron efficiency. 



Estimates of and upper limits on the CR energy content span more than 3 orders of magnitude:  
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Ø  SNRs w > εCR = 1 (                                 ) => higher density than derived from X-ray or assumed  
=> interacting SNRs are in a dense environment. 

Ø   Young SNRs εCR ∼ 0.1 - 1.0 => IC processes may contribute to their measured luminosity 

ECR ≡ ESN ≡10
51erg

Constraining SNRs’ CR Acceleration  

Acero	et	al.	2015	
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Credit: I. A. Grenier (Fermi LAT/AIM/U. Paris Diderot/CEA) 
and L. Tibaldo (Fermi LAT/SLAC). 

Cocoon of 10-100 GeV 
γ-ray emission 

IR emission from  
Cygnus Superbubble 

W44:		
Par'cle	escape?	Shocked	cloud?	

Study propagation around sources: 

Uchiyama,	et	al.	2012	

Indirect: Diffuse Studies 

Use MW observations to find new sources! 

Fermi-LAT SNR Catalog has >100 
GeV sources detected within 3° of a 

known SNR… 

T.	J.	Brandt	
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Indirect: Diffuse Studies 
Infer CR propagation using High and Medium Velocity Clouds: 

Local 
   Low-latitude IV Arch 
       Complex A	

Local 
Lower IV Arch 
Upper IV Arch 

Local 
IV Spur 

Emissivity = γ-ray emission rate / H atom 
z = height above Galactic plane 

Tibaldo,	et	al.	2015	

Ø γ-ray emissivity decreases as a function of distance 
from Galactic disk 

Ø First direct corroboration of CR acceleration in disk 
and propagation into halo 

Ø Complex A upper limit: currently most stringent 
constraint on CR flux at z ~ few kpc. 

T.	J.	Brandt	
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Direct: Leptons 
γ-ray instruments such as Fermi and Imaging Air Cherenkov Telescopes measure lepton showers: 

e+ + e− 

LAT/Bonino,	et	al.	2015	

T.	J.	Brandt	
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Direct: Leptons 
γ-ray instruments such as Fermi and Imaging Air Cherenkov Telescopes measure lepton showers: 

e+ + e− 

Secondary leptons 

one possible interpretation: 

LAT/DiMauro,	et	al.	2015	

LAT/Bonino,	et	al.	2015	

T.	J.	Brandt	
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Direct: Positron Fraction 
Fermi measurement uses Earth’s magnetic field to separate e+ from e− : 

Ackermann,	et	al.	2012	

T.	J.	Brandt	
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Direct: Positron Fraction 
Fermi measurement uses Earth’s magnetic field to separate e+ from e− : 

Ackermann,	et	al.	2012	

T.	J.	Brandt	
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Direct: Positron Fraction 
Fermi measurement uses Earth’s magnetic field to separate e+ from e− : 

Ackermann,	et	al.	2012	

T.	J.	Brandt	
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Direct: Positron Fraction 
Fermi measurement uses Earth’s magnetic field to separate e+ from e− : 

Ackermann,	et	al.	2012	

AMS	2014	

T.	J.	Brandt	
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Direct: Hadrons 
Fermi-LAT proton measurement:  

Ø E > 20GeV Ø 3 month’s data Ø Above atmosphere… 

LAT/Green,	et	al.	2015	

T.	J.	Brandt	
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We can use γ-rays to gain insight: 
Conclusions 

Ø  into CR origins, acceleration, and propagation 
Ø via direct and indirect detection techniques 

Potential sources:  SNRs, PWNe, PSRs, Massive star associations, …  
Ø Combine spatial and spectral γ-rays information with MW observations to infer the 

underlying particle populations, acceleration mechanisms, and emission processes. 
Ø Study shock dynamics/escape via nearby sources. 
Ø Use MW data to find/identify new sources! 

Propagation: 
Ø Use clouds as CR “calorimeter” to infer CR distributions beyond Earth.  
Ø H&IVCs and also see Chamaeleon complex, local HI emissivities, L & SMC, … 

By diversifying and expanding our multimessenger CR studies, we will obtain 
the most profound insights in CR astrophysics. 

Direct CR measurements:  

PaMELA + AMS + ISS-CREAM + SuperTIGER + CALET + ACE + HELIX + HNX 
+ HAWC + Fermi + VERITAS + MAGIC + HESS + CTA + NuSTAR + Chandra + 

XMM + IR + µwave + radio + IceCube + distances + … => CR origins, propagation!	

Ø constrain sources, locations, and propagation. 
Ø Measurement with different techniques helps reduce impact of systematic error! 

T.	J.	Brandt	


