Technology Development Status: Adjustable Grazing Incidence X-ray Optics for Sub-arcsecond Imaging

Paul Reid
Harvard-Smithsonian Center for Astrophysics

with: Tom Aldcroft (CfA), Vincenzo Cotroneo (CfA), William Davis (SAO), Reagan Johnson-Wilke (PSU), Stuart McMuldrough (CfA), Brian Ramsey MSFC), Daniel Schwartz (CfA), Susan Triller-McKinstry (PSU), Alexey Vikhlinin (CfA), and Rudeger H.T. Wilke (Grinnell/PSU), Robert Petre (GSFC), William W. Zhang (GSFC) + GSFC, JHU, MSFC, and PSU
Science Motivation – ASTRO2010

“Science frontier area: The epoch of reionization”
- Emergence of first galaxies
 - Hot halos around massive galaxies with large SFR
- Early stages of supermassive black hole merger tree
 - \(10^3 \, M_\odot\)
- Detailed chemical and dynamical study of hot accretion and outflows

“What are the connections between Dark and Luminous matter?”

“How do black holes grow, radiate, and influence their surroundings?”
- Detect and resolve quasar host halos and galaxy groups at \(z = 6\)
- Feedback and physics in clusters, galaxies, SNR
SMART-X: A mission concept for the 2020’s

- NRC NASA Technology Roadmap and X-ray Community Science Team both identify sub-arcsec imaging with very large collecting area as critical for future X-ray astronomy missions.

- Mission performance needed to achieve 2020’s science (launch by 2030)
 - 0.5 arcsec HPD @ 1 keV (Chandra-like)
 - 30 times Chandra eff. area @ 1 keV
 - 20+ arcmin FOV
 - Advanced detector suite: Active Pixel Imager, 1 arcsec imaging calorimeter $\Delta E \sim 5$ eV, grating spectrometer $E/\Delta E \sim 4000$

- Minimize development costs for an Observatory mission
 - Chandra-like spacecraft requirements – maximizes heritage, minimizes cost and risk
 - 10 m FL, mass, pointing control and aspect, S/W, Test & Ass’y, thermal
 - Build upon AXSIO architecture/studies/tech development

- To be a competitive mission for the 2020 Decadal
 - Achieve TRL 6 by 2018-2019 for mirror and detectors
 - Need technology funding now to develop light-weight, high angular resolution mirrors.

Motivation for adjustable bimorph X-ray mirrors

Existing technologies are limited:

- *Chandra* approach (precisely polished mirrors) too heavy
 - ~ 20,000 kg/m2 vs. ~ 400 kg/m2 for SMART-X
- Replication (IXO/AXSIO, XMM...) and pore optics (IXO/Athena) not enough resolution
 - 5 to 10 arcsec HPD vs. 0.5 arcsec HPD

New technical approach — adjustable bimorph mirrors:

- Use replication technologies to enable large collecting area
 - Build upon extensive IXO heritage in mirrors, alignment, mounting
- Bimorph approach: mirror figure adjustable after mounting/alignment
 - Correct fabrication, mounting, gravity release, and thermal errors, either once on the ground, or infrequently (or once) on-orbit
Program builds upon previous NASA investments

IXO/AXSIO production flow in Blue

Mandrel Fabrication → Thermal Forming Glass Pieces → Alignment & Mounting → Mirror Testing

Piezo Deposition

Added step provides optical figure correction capability
Adjustable Bimorph Mirror: a path to large area, high-resolution X-ray telescopes

- Thin (~1.5 um) piezoelectric film deposited on mirror back surface.
- Electrode pattern deposited on top of piezo layer.
- Energizing piezo cell with a voltage across the thickness produces a strain in piezo parallel to the mirror surface (in two orthogonal directions)
Adjustable Bimorph Mirror: a path to large-area, high-resolution X-ray telescopes

- Thin (~1.5 um) piezoelectric film deposited on mirror back surface.
- Electrode pattern deposited on top of piezo layer.
- Energizing piezo cell with a voltage across the thickness produces a strain in piezo parallel to the mirror surface (in two orthogonal directions)
Adjustable Bimorph Mirror: a path to large-area, high-resolution X-ray telescopes

• Thin (~1.5um) piezoelectric film deposited on mirror back surface.
• Electrode pattern deposited on top of piezo layer.
• Energizing piezo cell with a voltage across the thickness produces a strain in piezo parallel to the mirror surface (in two orthogonal directions)
Adjustable Bimorph Mirror: a path to large-area, high-resolution X-ray telescopes

- Thin (~1.5 um) piezoelectric film deposited on mirror back surface.
- Electrode pattern deposited on top of piezo layer.
- Energizing piezo cell with a voltage across the thickness produces a strain in piezo parallel to the mirror surface (in two orthogonal directions). Strain produces bending in mirror — **No reaction structure needed.**
- Optimize the voltages for each piezo cell to minimize the figure error in the mirror.
Adjustable Bimorph Mirror: a path to large-area, high-resolution X-ray telescopes

Major accomplishments:
- Deposition of large area piezos on glass (Penn State Materials Lab).
- Modeled and measured influence functions show good agreement.
- Patterning of electrodes on convex side of cylindrical mirror.
- Uniform deposition on convex side of cylindrical mirror.

Flat test mirror – 100 mm diameter 0.4 mm Corning Eagle glass with 1.6 μm PZT and 1 cm² electrodes.

Piezo cell

Strain gauges
Measured influence functions match models well

- Test using Corning Eagle™ flat glass, 0.4 mm thick, 100 mm diam., 1 cm² piezo cells
- Deflection at 10V is equivalent to 700 ppm strain — meets SMART-X 500 ppm requirement.
- Model influence function using FEA
- Residual (measured minus modeled) is the same amplitude as metrology noise.
Energizing PZT cells produce repeatable deflections

Small tick mark division = 50 nm
Metrology accuracy ~ ± 50 nm
Incorporating new, higher accuracy, lower noise metrology capable of measuring conical mirrors
Deposition and Patterning on conical/cylindrical mirrors

• Deposition Uniformity
 - Requirement: ≤ 10 per cent (each PZT cell separately calibrated)
 - Recent results with witness samples, 2 sputter guns

- Electrode patterning

Diagram:
- Thickness (angstroms) vs. position
- 5 per cent over mirror aperture (white dashed lines, left)
- Mirror
Simulated correction of measured data yields 0.6 arc sec HPD for initial 10 arc sec mirror pair

Use modeled influence functions for SMART-X mirror to correct representative data:

‘Before Correction’ = interferometer measurement of mounted IXO mirror (ca. 2008).
‘After Correction’ = residual after least squares fit of ~ 400 influence functions.

Compute PSF using full diffraction calculation:

Expect that correction of current AXSIO 7” mirrors produced at GSFC will meet SMART-X goals.
Our technology development path

• TRL 2: technology concept
 - Demonstrate PZT can be deposited and works on flats ✔
 - Deterministic (models agree with experiments) ✔

• TRL 3: experimental demo of critical function
 - Demonstrate PZT can be deposited and works on cylindrical pieces – in process
 - Deterministic – follows after demonstration
 - Simulation demonstrates feasibility ✔

• TRL 4 (proposed): breadboard validation with Wolter-I mirrors
 - Mount and align mirror pair to 0.25 arcsec in a “flight-like” mount
 - “flight-like” = survive launch loads and G-release
 - Correct figure errors of mounted aligned mirror pair to 0.5 arcsec HPD after accounting for test configuration errors
 - Demonstrate/verify with X-ray test
Multiple On-going and Planned Activities

• Demonstrate deposition of PZT and electrodes, and deterministic performance, on cylindrical substrates (TRL3).

• Incorporate new, higher accuracy metrology.

• Model impact of piezo cell failure on imaging performance to determine piezo lifetime requirements / prob of failure.
 - Accelerated and real-time lifetime testing

• Continue yield/uniformity enhancement via process and doping.

• Optimize shape/size of influence functions.
 - Improve correction efficiency and bandwidth

• *Examine command and control electronics for piezo cells*
 - integrated on-cell electronics and row/column addressing

• *Build aligned, mounted Wolter-I mirror pair, correct figure, and X-ray test (TRL4, 2015).*
1. Technology builds upon IXO / AXSIO optics technology development.

2. PZT thin films can be deposited on glass, work as piezos, and meet requirements.

3. Approach is deterministic: demonstrated good agreement between modeled and measured influence functions.

4. Patterning of electrodes and uniform deposition on curved mirrors demonstrated.

5. Approach is consistent with half-arcsec imaging: simulations show correction of ‘old’ [IXO 2008] 10″ HPD mounted mirror pair to 0.6″ HPD. Expect current GSFC 7″ AXSIO mirrors correctable to 0.4″.

6. A technology development plan exists, leading to TRL4 in 2015 and TRL6 in 2019.