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1. LIGO / Virgo
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ADVANCED VIRGO
commences observations

B Virgo
B Hanford

Livingston

100
LVC 2017, PRL

Frequency (Hz)

Upgrades completed and Advanced Virgo
became operational in August 2017. Main
enhancements over initial Virgo:

Increased finesse of arm cavities

Test masses heavier, lower absorption,
higher surface quality

Size of beam doubled (vacuum system and
input/output optics modified accordingly)

More robust control of final pendulum stage

Not in this talk: LIGO/Virgo sensitivity
improvements In software developed and
deployed in O2

Feed-forward noise subtraction
Glitch removal by masking or subtraction

Fully coherent rapid localization for
iInhomogeneous networks of detectors



Advanced GW Detectors



LIGO Hanford

Operational since 2015/08

Advanced GW Detectors



LIGO Hanford

Operational since 2015/08

d GW Detectors

LIGO Livingston

Operational since 2015/08
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Frequency [Hz]

AUGUST 14, 2017, 10:30:43 UTC:

the first BBH signal observed with Virgo
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Signal arrived first at Livingston,
then 8.4 ms later at Hanford, then
6.6 ms later at Virgo

Clearly visible chirp trace in Hanford
and Livingston spectrograms; faint
telltale visible in Virgo

Independently detected in low
latency within 30s of data
acquisition by two real-time
searches for compact binary inspiral
signals: GstLAL (see C. Hanna’s
colloquium at GSFC on October 31)
and PyCBC

Initial matched-filter signal to noise
ratios in H/L/V: 7.3/13.7/4.4



OCTOBER 14, 2017, 10:30:43 UTC:
the first GW signal observed with Virgo
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A 31 on 25 Mo binary black hole merger

Thanks to additional detector baseline,
localized to 60 deg?

First measurement of gravitational-wave
polarization: confirmation of tensor nature
of gravitational waves as predicted by GR

More detailed tests of GR in progress



AUGUST 17, 2017, 12:41:04 UTC

the first gravitational wave signal from a binary neutron star merger

LIGO-Hanford [, 5 ‘ *

\

LVC 2017, PRL : <

Detected in low latency in Hanford data. Chirp track clearly
visible, long duration immediately implied a low mass binary
merger!

Chirp visible in Livingston too, but did not trigger due to a
photodiode saturation glitch.

No chirp visible in Virgo.

H/L/V signal to noise ratio after noise subtraction and glitch
removal: 18.8/26.4/2.0

Component masses: 1.4-1.6 on 1.2—1.4 Mo

Localized to only 30 deg? and 26-48 Mpc despite weak/
unresolved signal in Virgo due to proximity to antenna
pattern null
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GW170104

GW150914 GW151226

Credit: LIGO/Virgo/NASA/Leo Singer
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Credit: LIGO/Virgo/NASA/Leo Singer



LVC, Fermi GBM, & INTEGRAL 2017 (ApJL) jeee® =™
Lightcurve from Fermi/GBM (10 — 50 keV)
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: gamma-ray burst!!!
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- * Short-duration gamma-ray transient

= Lightcurve from INTEGRAL/SPL-ACS detected by Fermi GBM and INTEGRAL
@ 120000 1 (> 100 keV)

= SPI-ACS

§/ 117500

£ 115000 h. L | i . bl JI.JL. m Lt g It _ _ _ L

; “ | “k " "H H " H" L IM it A T e Spatially consistent with GW localization,
. but arrived 1.74 s after GW merger signal

IMOE Gravitational-wave time-frequency map

 Two components: short (~0.6 s), hard
(Ep~185 KeV) pulse that resembles
standard short GRB and delayed, longer
(~1.2 s), softer (Ep~10 keV) talil
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2. Discovery, Observing
Strategies




Discovery of a rapidly fading optical counterpart

|:| Swope FOV
Host Probability
10%
1%

NGC 4993

0.1%

April 28, 2017 Hubble Space Telescope | August 17, 2017 Swope Telescope

 Rapidly fading optical transient detected by One Meter,
Two Hemisphere (1M2H) team using Swope 1m | 31
telescope at Las Campanas . 1 M2H Team/

Coulter et al. 2017

* Announced as SSS17a, also designated AT2017gfo (Science)

e Position in projected coincidence with the galaxy

NGC 4993 at a distance of 40 Mpc * Also found using synoptic optical/near infrared telescopes
(DECam, VISTA, MASTER)

 Confirmed by many teams doing independent optical

* But defied common wisdom that it was found by galaxy targeted
counterpart searches and targeted follow-up of source

follow-up on small-FOV (and even small aperture) telescopes
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Distance (M

Nissanke, Kasliwal, &
Georgieva 2013

Gehrels, Cannizzo,
Kanner, Kasliwal,

Nissanke, & Singer 2016

Singer, Chen, Holz,
et al. 2016

strategies for LIGO-Virgo follow-up

Expected Number of Galaxies
10" 10° 10° 10* 10°

10° 10° 10° 10’
90% C.L. Comoving Volume (Mpc?)

Chen & Holz 2016



Pinpointing the optical
counterpart

* QOrder of magnitude

A B Right ascension yx~ X C Improvement in
localization due to
Virgo: 190 — 30 deg?

60°

30° HL

Declination

 Of the ~50 galaxies
in the LIGO/Virgo 3D
localization volume,
NGC 4993 is the

third most massive

HLV la/

IPN By
30° _ * A priori, the most
X - likely host assuming
I\
0 stellar mass as a
-60° N\

Right ascension tracer for BNS
merger rate

Kasliwal, Nakar, Singer+ 2017



10°

Singer et al., in prep.

Localization of a
GW170817 with
future detectors

15°

HL as built, 20"

HLV as built,
HLV at O3 sensitivity,
HLVIK at design sensitivity o550

Caveat: this was an
exceptionally well localized
event because It was so nearby! 13h40m  20m 00m  12h40m  20m




3. Optical and Near Infrared
Observations



Near-infrared
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Apparent magnitude (AB)
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Kasliwal, Nakar, Singer+ 2017
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v/c

0.1 1

Blackbody fits

Bolometric luminosity, effective
temperature, photospheric
radius, and expansion velocity

Red line: hydrodynamic
simulation of cocoon + kilonova

1: Cocoon cooling component

2. Fast-moving (>0.4c)

DQQ@&&@@% @)

radioactive ejecta component

3: Slow-moving (<0.4c)

0 1 2 3 4 5
Time since GW170817 (days)

Kasliwal, Nakar, Singer+ 2017

sttty

radioactive ejecta component




Optical spectroscopy

2.00

1.75 -
g: 1.50
§ s . Gemini-South + GMOS
i e Gemini-S/GMOS e Keck + LRIS
E 0.75 - days
20-50- Gemin SIGHOS * Featureless blackbody
2 o | | days continuum

000 - | A ggj:/l_ms

4000 5000 6000 7000 8000 9000 10000 11000
Rest wavelength (A)

Kasliwal, Nakar, Singer+ 2017



Near-infrared spectroscopy
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 Gemini-South +
FLAMINGOS-2 JH + HK
spectrum @ 4.5 days after
merger (black)

 Barnes & Kasen (2013)
model kilonova spectrum
at 4.5 days post merger

—
<

|_/|-\
|
oL
)
e
o
T
n
(@)
-
L)
¥
=
=
7))
C
()
©
X
S
L

10000 12000 14000 16000 18000 20000 22000 24000
Rest wavelength (A)

Kasliwal, Nakar, Singer+ 2017



Looks nothing like known explosive transients

Normalized flux + constant
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Remarkable agreement between optical/near-IR
data and r-process kilonova/macronova modeling

2.0

Wavelength (um) Wavelength (um)

10,000 15,000 0,000 25,000 Kasen+ 2017 (Nature)

Wavelength (A)

Pian+ 2017 (Nature)



4. Interpretation, Radio



The puzzle

Short GRB, but DELAYED and SUB-LUMINOUS

No evidence for on-axis X-ray/optical/radio afterglow (although no deep
observations before ~0.5 days)

Bright, rapidly fading UV/optical emission = FAST and HOT as inferred
from blackbody fits

DELAYED X-ray and radio emission



A On-axis Weak sGRB

Weak Afterglow
B> (X-ray/Radio) .

Macronova

% (UVOIR)

C Cocoon with Choked Jet

A Afterglow
e g (X-ray/Radio)

/

Macronova
% UVOIR)

\,

Kasliwal, Gottlieb, Singer, et al. 2017

B Slightly Off-Axis Classical sGRB

A Afterglow
o -‘é-‘ (X-ray/Radio)

Weak y-rays

Macronova
% (UVOIR)

D On-axis Cocoon with Off-Axis Jet

A Afterglow
s é (X-ray/Radio)

Weak y-rays
I\/Iacronova

D.

A concordant
picture

Early data sparse, but probably ruled
out by lack of early panchromatic
afterglow (requires implausibly low
circumburst medium density)

Requires some fine-tuning of observer
geometry (just barely outside of cone
of jet) or structured jet

Highly energetic cocoon, ultra-
relativistic jet is choked and does not
break out

Low energy cocoon, ultra-relativistic
jet successfully breaks out and is seen
off axis



Radio at ~100 days post merger has the
power to discriminate between the models

¢ Observations at 3 GHz Hallinan, Corsi, Mooley, ..., Singer 2017
""" '=1.5; E=10"° erg ; n=0.025 cm™

—High E cocoon : I'=2 ; E=10"° erg ; n=0.003 cm™

= =Low E cocoon : I'=2 ; E=10%° erg ;, n=0.0034 cm™

--—-Off-axis jet: #.=12°; 0, =30°; E,_ =2 x 10°° erg ; n=0.001 em™
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Off-axis jet (cases B or D) predict that the radio already peaked,
whereas choked cocoon (case C) predicts peak at ~100 days



VLBI can break tie by resolving
angular diameter of blast wave

Hallinan, Corsi, Mooley, ..., Singer 2017
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Angular diameter of blast wave from cocoon/choked jet should be
smaller at all times than off-axis relativistic jet because it takes longer
and has to travel farther to sweep up sufficient circumburst material



5. A Few Open Questions

. Why was the prompt emission so faint? Did we merely observe the
merger off-axis, or was the burst intrinsically different from typical well-
studied sGRBs (e.g. from Swift with X-ray afterglows)?

. What was the cause of the GW-GRB time delay?

. What was the initial Lorentz factor of the outflow, and what process
launched it? Did it interact in any interesting way with the sub-relativistic
outflows?

. What can we learn from early-time observations of future GW-GRB NS
binary mergers, particularly in X-ray/optical/ultraviolet?



